欢迎访问艾哈去范文网!微信公众号:

《分解质因数》优秀教案(分解质因数教学设计一等奖)

时间:2024-11-28 13:19:10编辑:

作为一位杰出的老师,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。写教案需要注意哪些格式呢?以下是小编帮大家整理的,欢迎大家分享。

1

「一」理解质因数、分解质因数的意义。

「二」会把一个合数分解质因数,掌握用短除式分解质因数。

「三」培养学生观察分析,概括的能力。

教学重点和难点

「一」质因数与分解质因数的意义。

「二」用短除式分解质因数。

教学用具

投影片。

教学过程设计「一」复习准备

1、请说出1~12这些数中的质数和合数。「投影片」

学生口答后,投影出示答案:

①2,3,5,7,11是质数;

②4,6,8,9,10,12是合数。

2、说一说质数与合数的区别?

3、请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?

学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。这节课就来研究要求连乘式子里的因数都是质数的情况。

「二」学习新课

1、质因数的意义,分别质因数的意义和方法。

「1」板书例3 6,28和60可以写成哪几个质数相乘的`形式?

教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。

教师:用算式如何表示,学生口答后老师板书;6=2×3。

教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。问:4老师为什么没圈?「4不是质数,继续分解。」

板书;2,2,圈上。请用算式表示。板书;28=2×2×7。

教师:请用上面的方法把60分成几个质数相乘的形式。老师巡视中请一位同学板书出塔式分解式和算式。

「2」教师:请观察,「指塔式分解式和算式」每个合数都写成什么形式?「每个合数都写成了几个质数相乘的形式。」

教师:这些质数,在式子里与原来的合数是什么关系?「这些质数都是原来合数的因数。」

教师:像这样,把一个合数写成几个质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。板书:质因数。

教师:请说一说什么是质因数。

请说一说上面三个算式中谁是谁的质因数。

针对学生口答,老师说明:讲质因数时,要说出这个质数是哪个合数的质因数,不能单独说一个数是质因数。

教师:「指上面的式子」把一个合数用质因数相乘的形式表示出来,叫做分解质因数。「板书:分解质因数的意义」这就是这节课研究学习的内容。「板书课题:分解质因数。」

「3」口答练习「学生口答后老师板书」

把24,36分解质因数。

2、用短除式分解质因数。

教师:为了简便,通常用短除法来分解质因数。

介绍步骤:

第一步,用能整除6的质数2去除,商3;

第二步,3是质数;

第三步,把除数和最后的商相乘。

教师:试用短除式分解28。「学生口答老师板书」教师:第一步做什么?

14是最后结果吗?第二步做什么?

第三步做什么?

教师:请观察上面两个短除式中的除数和最后的商,都是什么数?「质数。」

「2」请一位同学板书把60分解质因数。其余同学在本上试把18和42分解质因数「两位同学写投影片」教师:请观察短除式,第二步与第三步的做法有什么相同点和不同点?

学生讨论后,归纳:这两步除的方法与第一步相同,也就是说那一步除得的商如果是合数,就照同样的方法继续去除,除到最后商为质数为止。

用学生投影片订正把18和42分解质因数的短除式。

「3」谁能说一说用短除式分解质因数的步骤吗?

学生口答后教师归纳。并作简要板书:

第一步:先用一个能整除这个合数的质数「通常从最小的开始」去除;

第二步:看上一步除得的商,如果商是合数,就照上面的方法继续除下去,直到得出的商是质数为止;

第三步:把各个除数和最后的商写成连乘形式。

「三」巩固反馈

1、口答填空。「投影片」

①18的质因数有「 」;5和7是「 」的质因数。

②分解质因数。

2、判断正误。对的画√,错的画×并找出错误原因。「学生用反馈牌」

①2和5是质因数; 「 」

②一个合数的约数,就是它的质因数; 「 」

③24分解质因数:24=1×2×2×2×3; 「 」

④8分解质因数:8=2×2×2; 「 」

⑤30分解质因数:30=5×6;「 」

⑥21分解质因数:3×7=21。「 」

3、用短除式把34,54,72分解质因数。

「四」课堂总结和课后作业

1、质因数,分解质因数。

2、用短除法分解质因数。

2、作业:课本P63练习十三:7,8,9。

课堂教学设计说明

本节内容是在学生已经掌握了求一个数的约数的方法和质数,合数概念的基础上进行的。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识到质因数是一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,归纳分解步骤这几步进行,这样使学生能准确把握住用短除式分解质因数的关键和方法,也培养了学生观察,分析和概括的能力。

新课教学分为两部分。

第一部分学习质因数与分解质因数的意义和方法。共分为三层,写塔式分解式对合数进行分解;归纳质因数,分解质因数的意义;会用塔式分解式分解质因数。

第二部分学习用短除式分解质因数。分为三层。掌握用短除法分解质因数的方法;巩固用短除式分解质因数的方法;归纳用短除法分解质因数的步骤。

2

(1)使学生了解每一个合数,都可以写成几个素数相乘的形式。

(2)掌握质因数和分解质因数的概念,学会用短除法分解质因数。

教学重点、难点重点:掌握质因数和分解质因数的概念。难点:教具、学具准备教学过程

备注

一、复习准备

1、什么叫做素数?什么叫做合数?各举例说明。

2、20以内的素数有哪几个?为什么”1“既不是素数又不是合数?

二、教学新识

1、教学例2

(1)10是由哪几个素数相乘得到的?

(2)教学归纳:10是由2和5两个素数乘得到的,板书:10=2×5

(3)同时出示24和63的分解图。提问:“4和6”是素数吗?谁能继续分解,在□内填上素数?(指两名学生分别板演)那么,怎样把24和63分别写成几个素数相乘的形式呢?

学生答后板书:24=2×2×2×3;63=3×3×7

(4)把以上3个合数,分别写成了几个素数相乘的形成,是不是每一个合数都可以写成几个相乘的形式呢?再举例说明。

(5):从以上的合数可以看出,每个合数都可以写成几个素数相乘的形式。出示:“一个合数可以写成几个素数相乘的形式,其中一个素数都叫做这个合数的()。把一个合数用质因数相乘的形式表示出来,叫做()。”引导学生看书作答。(板书:“质因数”、“分解质因数”并举例例2说明)

2、练一练

(1)P44第1题,同桌讨论后口答反馈,并说出打x的理由。教师:“2和5,都是素数,但不能叫质因数。因为2和5都是10、20......这些合数的素数,离开这些合数,就不能孤立地叫质因数。4和5都是20的因数,但4和5不都是20的质因数。”

(2)P45第2题,提问:“把下面各数分解质因数”是什么意思?学生答后独立作业在书上之后再评讲。

如果:“51=1×51”对吗?为什么?

“42=3×14”对吗?为什么?

我们已经懂得了什么叫做分解质因数。我们通常用短除法来分解质因

教学过程

备注

数,如何用短除法进行分解呢?

3、教学例3。

(1)15可用哪几种素数相乘的形式来表示?

教师说:“用短除法来分解,先用一个能整除15的素数3除。(板书:3),用3去除得出的商是几?(板书:5),商5是素数还是合数?得出的商是素数,就不要再除下去了,就把除数和商写成相乘的形式。板书:15=3×5。这就是用短除法把15分解质因数。

(2)”42“怎样用短除法进行分解呢?学生答后,教师强调先用一个最小的能整除这个合数的素数去除,板书。

商21是素数还是合数?商21是合数还不是素数怎么办”(继续分解?照上面的方法,继续除下去。)第二次除时,把21当被除数,除数应该是几?为什么?(除数必须整除这个合数的素数,其中最小,通常用3作除数。)学生答后,板书。

商7是素数还是合数?商7已经是素数,短除到此为止。问:合数42,怎样用质因数相乘的形式表示?板书:42=2×3×7

(3)学生试练:用短除法把60分解质因数。练后,让学生与书中对照,统计正确率。把学生中的错误写在黑板上,讨论错在哪里?为什么?

(4)学生看书上概括用短除法分解质因数的结语。要求分清三层意思,划出没层中的关键词语。

三、巩固练习

1、用短除法分解质因数。

365475123

2、不用短除法,分解质因数。

(1)口答:

6=21=22=12=

(2)共同练习

25=66=16=91=

3、课内作业:书上P45第4题。

四、教学

通过这节课的学习,你懂得了什么?学会了什么?

五、作业《作业本》

对于分解质因数的'形式,学生较易掌握,但在实际分解过程中,往往分解得不彻底,最后的因数不都是质数。强调质因数既是质数又是因数。

课后反思:

在教学“分解质因数”这一课时,反馈阶段“把24分解质因数”,我请做得快的同学上黑板板书,板书情况如下:书写非常端正工整,答题步骤及答案无可挑剔。集体订正时,我表扬了这位同学做题迅速、正确、工整,同时也委婉的指出,今后书写时最好按从左到右的顺序写。这时,一个同学突然举手,我让他说说有什么问题,他大声说:“老师,我不同意你的看法,我认为从右往左写是一种创新,你不是经常要我们多创新,常创新吗?”我怔了一下,然后微笑着肯定了他敢于发表自己不同的见解及自己的想法,同时引导大家来讨论,这算不算是一种创新?许多同学都踊跃的发表自己的看法。

3

苏教版义务教育教科书数学》五年级下册第38页例7、例8和练一练你知道吗,第39~40页练习六第4~8题和你知道吗。

教学目标:

1、使学生认识质因数,知道合数能写成质因数相乘的形式,能把合数分解质因数;了解可以用短除法分解质因数。

2、使学生经历探索分解质因数的过程,理解分解质因数的方法,掌握分解质因数的技能,发展分析、推理等思维能力,进一步提升数感。

3、使学生主动参加探究活动,在探索分解质因数的过程中获得成功,相信自己能学会数学,产生学好数学的信心。

教学重点:

学会分解质因数。

教学难点:

认识分解质因数的过程。

教学准备:

小黑板

女生节活动策划公司

教学过程:

一、认识质因数

1、写出算式。

要求:你能把5和28分别写成两个数相乘的形式吗?自己写一写。交流:你是怎样写的?(板书:5=15 28-128 28=214 28=47)

2、认识质因数。

引导:在这些算式中,哪些数是5的因数?哪些数是28的因数?5和28的这几个因数中,分别有哪些是质数?同桌互相说一说。

交流:能把你们的意见和大家分享吗?

明确:在积是5的乘法算式中,1和5是5的因数,其中5是质数;在积是28的算式中,1和28、2和14,4和7都是28的因数,其中2和7是质数。像这样一个数的因数是质数,这个因数就是它的质因数。(板书:质因数一个数里是质数的因数)

3、强化认识。

追问:上面算式里,哪个数是哪个数的质因数?1为什么不是5的质因数?1、28、14和4为什么不是28的质因数?

强调:一个数的.质因数要符合两个条件:它是这个数的因数;它又是质数。这时它就是这个数的质因数。比如5是5的因数,又是质数,所以5是5的质因数;2是28的因数,又是质数,所以2是28的质因数。

4、做练习六第4题。让学生阅读习题,独立思考。

交流:你能回答这里两道题的问题吗?说说你的答案。追问:怎样的数才可以称作一个数的质因数?

《分解质因数》优秀教案4

1、使学生理解质因数、的意义,初步会把一个合数、

2、培养学生观察、比较、抽象、概括的能力、

教学重点

质因数和的意义、

教学难点

用短除式

教学过程

一、引入

1、在5、13、21、32中,哪些是质数?哪些是合数?为什么?

2、把上面各数用两个自然数相乘的形式表示出来、

5=× 13=×

21=× 32=×

教师:填出的这些数与原数有什么关系?

3、以上几个自然数都可以用两个因数相乘的形式表示,其它的自然数行吗?

教师:用一句话来概括,一个自然数可以用什么形式表示出来?

板书:把一个自然数用两个因数相乘的形式表示出来、

二、新授

1、如果我们做一个规定,“1除外”(板书于因数外),也就是因数不能用1,这句话还能这么说吗?举例说明、

教师:在因数不用1的前提下,什么数仍能用两个因数相乘的形式表示,什么数就不能?

(合数能,质数不能)

板书:把一个合数用两个因数(1除外)相乘的形式表示出来、

2、根据这条结论把下面几个合数用两个因数相乘的形式表示出来、

6、15、24、28

6=2×3 24=2×12

15=3×5=3×8

=4×6

28=4×7

=2×14

3、这些合数(指24、28)的因数中还有合数12、8、6……根据刚才的结论又可以用什么形式表示?现在不限制因数的个数(擦去结论中的“两个”)把这些合数用最多个因数相乘的形式表示出来、

组织学生讨论汇报、

24=2×2×2×3

教师:6和15还能不能用更多个因数相乘的`形式表示?为什么不能?

明确:这些因数都是质数,根据这一特点,我们给它们起一个名字?(质因数)

根据黑板上的例子说一说什么叫质因数?

4、反馈练习

6的质因数有、2和3是6的

2和3还是谁的质因数?24的质因数有哪些?

28的质因数有哪些?

如果说3和5是质因数对吗?怎么改?

(12、4、6……)这几个因数是不是质因数?

5、现在我们是把一个合数用什么形式表示出来?

教师根据学生回答在原结论中添上“质”字,去掉“1除外”、

同步板书课题:

三、练习

1、判断下面各题,对的画“√”,错的画“×”,并说明理由、

(1)35是35=1×5×7

(2)60是60=2×3×10

(3)27是27=3×3×3

(4)14是2×7=14

2、把下面各数、

(1)口答:4、6、8、9、10、

(2)笔答:16、18、54、

3、把9、90、900,你发现什么?

四、小结

什么叫质因数?什么叫?时我们要注意哪些问题?

五、作业

1、把下面各数、

8 12 16 24 54 72

2、下面的数是由哪几个质数相乘得到的、

10 21 27 35 49 50

六、板书设计

《分解质因数》优秀教案5

优秀作文推荐:教学目标

1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。

2、能对以上概念作正确判断,能熟练地把合数分解质因数。

教学重点、难点

分解质因数教学反思

重点、难点:理解概念,并能熟练运用。

教具、学具准备

教学过程

备注

一、知识整理与基本练习

1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。

6.9÷9111÷3除尽整除

18÷669÷1

10÷42.4÷0.8

反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?

2、练习:课本P65第1题。

(1)学生在课本上全体练(1人做在投影片上)

(2)投影反馈,矫正错误。

(3)提问:

A、自然数与整数之间有什么关系?(学生回答后出示投影片)

B、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?

C、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?

D、答:自然数()和()组成,或者由(),()和()组成。

3、练习,课本P66第4题(学生练习后反馈)

4、出示:在36、48、84、75、15、210、130、204这些数中,(1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。

(2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。

(3)说一说,它们各有什么特征?

5、提问:

什么叫分解质因数?把课本P65第1题中的合数分解质因数。

教学过程

备注

(1)生练习(两个做在投影片上)

(2)反馈,矫正。

(3)练习课本P66第6题(学生练习后反馈)

缅怀先烈作文

二、综合练习

1、填空:(投影片逐题出示,学生先思考,想好后再回答)

(1)12的全部约数有(),把72分解质因数是()。

(2)最小的自然数是(),最小的素数是()最小的'合数是(),最小的奇数是(),最小的偶数是()。

(3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。

(4)自然数A÷B=4,则A能被B(),B是A的(),4能整除()。

2、练习课本P66第5题(学生练习后反馈,说理)

3、思考题:

有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:“我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?”你能想出来吗?

三、课堂作业《作业本》四、学生总结

通过知识整理及填空、选择、判断各种题型的训练,学生进一步掌握了各个概念,并能对各个概念加以区分。

本文标签:
本文专题:

下一篇:返回列表